由于官方给出的SDK是标准库的形式,而我又是使用的是hal库,所以我需要根据hal库来进行修改官方给出的SDK,将他移植到hal库当中。首先在此说明我使用的是stm32f1系列的芯片,具体的型号是stm32f103ret6,时钟频率为72MHz,目前是移植成功。
首先
我是通过stm32CubeMX生成hal库的代码,进行相关的基础配置,我配置串口2与串口舵机进行通信,设置好相应的波特率,我的波特率是官方默认的115200,所以我也设置成115200,其他就无需修改。然后我使用定时器6来实现1ms的定时中断,将PSC设置成71,ARR设置成999,就可以实现1ms的定时中断。别忘是使能定时器6和定时器6的中断,中断优先级最好设置成最高。
其次
将官方给的ring_buffer.c/.h和fashion_star_uart_servo.c/.h移动到hal库的工程当中,ring_buffer主要是在stm32实现消息队列的功能,可以不做任何的修改,fashion_star_uart_servo等下再需要修改。由于官方使用的是滴答定时器来实现1ms的中断,而本人能力有限,所以使用定时器6来实现1ms的中断,所以需要新建Tick.c/.h来实现相关的延时函数。代码如下: Tick.h
#ifndef __TICK_H
#define __TICK_H
#include "stm32f1xx.h"
#include "tim.h"
extern __IO uint32_t TickCnt;
void Tick_Wait();
void Tick_DelayUs(__IO uint32_t nTime);
void Tick_DelayMs(__IO uint32_t nTime);
void Tick_CountdownBegin(__IO uint32_t nTime);
void Tick_CountdownCancel();
uint8_t Tick_CountdownIsTimeout();
#endif //__TICK_H
Tick.c
#include "Tick.h"
__IO uint32_t TickCnt;
//等待计时完成
void Tick_Wait(){
HAL_TIM_Base_Start_IT(&htim6);
while (TickCnt > 0);
HAL_TIM_Base_Stop_IT(&htim6);
}
//延时us
void Tick_DelayUs(__IO uint32_t nTime){
uint32_t nTime_us = nTime / 1000;
TickCnt = nTime_us;
Tick_Wait();
}
//延时ms
void Tick_DelayMs(__IO uint32_t nTime){
TickCnt = nTime;
Tick_Wait();
}
//设置倒计时(非阻塞式)
void Tick_CountdownBegin(__IO uint32_t nTime){
TickCnt = nTime;
HAL_TIM_Base_Start_IT(&htim6);
}
//撤销倒计时
void Tick_CountdownCancel(){
TickCnt = 0;
HAL_TIM_Base_Stop_IT(&htim6);
}
//判断倒计时是超时
uint8_t Tick_CountdownIsTimeout(){
return TickCnt == 0;
}
然后编写定时器的中断回调函数,并且在主函数使能定时器6的中断。
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){
if(htim->Instance == TIM6){
if(TickCnt > 0){
TickCnt--;
}
else{
TickCnt = 0;
}
}
}
这样实现了非阻塞式的延时函数,和一些关于定时的相关函数。
然后
这时需要对usart.c/.h添加一些代码,注意因为使用了ring_buffer里面的函数和变量, 需要包含“ring_buffer.h”。 usart.h
typedef struct {
UART_HandleTypeDef *pUSARTx;
RingBufferTypeDef *sendBuf;
RingBufferTypeDef *recvBuf;
}Usart_DataTypeDef;
#define USART_RECV_BUF_SIZE 500
#define USART_SEND_BUF_SIZE 500
extern RingBufferTypeDef usart2SendRingBuf;
extern RingBufferTypeDef usart2RecvRingBuf;
extern Usart_DataTypeDef usart2;
extern uint8_t usart2SendBuf[USART_SEND_BUF_SIZE+1];
extern uint8_t usart2RecvBuf[USART_RECV_BUF_SIZE+1];
usart.c
RingBufferTypeDef usart2SendRingBuf;
RingBufferTypeDef usart2RecvRingBuf;
Usart_DataTypeDef usart2;
uint8_t usart2SendBuf[USART_SEND_BUF_SIZE+1];
uint8_t usart2RecvBuf[USART_RECV_BUF_SIZE+1];
其中Usart_DataTypeDef的第一个变量原本定义为USART_TypeDef,这是标准库的写法,根据hal库的特性需要改成hal库的串口句柄即UART_HandleTypeDef,然后我只定义了串口2的消息队列,也可以根据具体配置来进行修改,或者为所有串口都定义一遍,这样无论使用哪个串口都可以使用舵机。 然后在串口2的初始化函数void MX_USART2_UART_Init(void),添加上新的代码
void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
//新添加的代码开始
usart2.pUSARTx = &huart2;
RingBuffer_Init(&usart2SendRingBuf,USART_SEND_BUF_SIZE,usart2SendBuf);
RingBuffer_Init(&usart2RecvRingBuf,USART_RECV_BUF_SIZE,usart2RecvBuf);
usart2.sendBuf = &usart2SendRingBuf;
usart2.recvBuf = &usart2RecvRingBuf;
//新添加的代码结束
/* USER CODE END USART2_Init 2 */
}
主要是为串口2的消息队列做初始化,此外还需要添加下面一个函数,记得在usart.h定义!
//将串口的缓冲区的内容全部发送出去
void Usart_SendAll(Usart_DataTypeDef *usart){
uint8_t value;
while (RingBuffer_GetByteUsed(usart->sendBuf)){
value = RingBuffer_Pop(usart->sendBuf);
HAL_UART_Transmit(usart->pUSARTx,&value, sizeof(value),HAL_MAX_DELAY);
}
}
接下来就需要使用串口接收中断回调函数,在此之前,需要在主函数使能串口接收中断
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart){
if(huart->Instance == USART2){
HAL_UART_Receive_IT(&huart2,&ucTemp2, sizeof(ucTemp2));
RingBuffer_Push(usart2.recvBuf, ucTemp2);
}
}
然后就是修改fashion_star_uart_servo.c文件的函数,把原来的关于SysTick改为Tick.c里的对应函数就可以了。 然后给出示例代码
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "retarget.h"
#include "Tick.h"
#include "uart_servo.h"
#include "math.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
uint8_t ucTemp2;
Usart_DataTypeDef* servoUsart = &usart2;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t servoId = 0;
FSUS_STATUS statusCode;
uint16_t power = 0;
uint8_t wait = 0;
float curAngle = 0;
uint16_t interval = 1000;
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
RetargetInit(&huart1);
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
MX_USART3_UART_Init();
MX_TIM6_Init();
/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start_IT(&htim6);
HAL_UART_Receive_IT(&huart2,&ucTemp2, sizeof(ucTemp2));
Tick_DelayMs(1000);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
FSUS_SetServoAngle(servoUsart, 0 , 0, 200, power, wait);
FSUS_SetServoAngle(servoUsart, 1 , 5, 200, power, wait);
Tick_DelayMs(interval);
for(int i = 10;i>=0;i--){
double angle = (3.14159 / 2) * i / 10;
float value = 5 * cos(angle);
float value2 = 5 * sin(angle);
FSUS_SetServoAngle(servoUsart, 0, value, 20,power,wait);
FSUS_SetServoAngle(servoUsart, 1, value2, 20, power, wait);
Tick_DelayMs(20);
}
for(int i = 0;i <= 10;i++){
double angle = (3.14159 / 2) * i / 10;
float value = 5 * cos(angle);
float value2 = 5 * sin(angle);
FSUS_SetServoAngle(servoUsart, 0, value, 20,power,wait);
FSUS_SetServoAngle(servoUsart, 1, -value2, 20, power, wait);
Tick_DelayMs(20);
}
for(int i = 0;i >=0 ;i++){
double angle = (3.14159 / 2) * i / 10;
float value = 5 * cos(angle);
float value2 = 5 * sin(angle);
FSUS_SetServoAngle(servoUsart, 0, -value, 20,power,wait);
FSUS_SetServoAngle(servoUsart, 1, value2, 20, power, wait);
Tick_DelayMs(20);
}
for(int i = 0;i <= 10;i++){
double angle = (3.14159 / 2) * i / 10;
float value = 5 * cos(angle);
float value2 = 5 * sin(angle);
FSUS_SetServoAngle(servoUsart, 0, value, 20,power,wait);
FSUS_SetServoAngle(servoUsart, 1, value2, 20, power, wait);
Tick_DelayMs(20);
}
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){
if(htim->Instance == TIM6){
if(TickCnt > 0){
TickCnt--;
}
else{
TickCnt = 0;
}
}
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart){
if(huart->Instance == USART2){
HAL_UART_Receive_IT(&huart2,&ucTemp2, sizeof(ucTemp2));
RingBuffer_Push(usart2.recvBuf, ucTemp2);
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
当然为了可以实现更好的移植性,可以自己编写usart,让它变成板级支持包,这样更加方便移植,此外,对于滴答定时器用hal库实现1ms的中断,我这里给出野火的代码
/**
******************************************************************************
* @file bsp_SysTick.c
* @author fire
* @version V1.0
* @date 2016-xx-xx
* @brief SysTick 系统滴答时钟10us中断函数库,中断时间可自由配置,
* 常用的有 1us 10us 1ms 中断。
******************************************************************************
* @attention
*
* 实验平台:野火 STM32 F746 开发板
* 论坛 :http://www.firebbs.cn
* 淘宝 :http://firestm32.taobao.com
*
******************************************************************************
*/
#include "./systick/bsp_SysTick.h"
static __IO u32 TimingDelay;
/**
* @brief 启动系统滴答定时器 SysTick
* @param 无
* @retval 无
*/
void SysTick_Init(void)
{
/* SystemFrequency / 1000 1ms中断一次
* SystemFrequency / 100000 10us中断一次
* SystemFrequency / 1000000 1us中断一次
*/
if (HAL_SYSTICK_Config(SystemCoreClock / 100000))
{
/* Capture error */
while (1);
}
}
/**
* @brief us延时程序,10us为一个单位
* @param
* @arg nTime: Delay_us( 1 ) 则实现的延时为 1 * 10us = 10us
* @retval 无
*/
void Delay_us(__IO u32 nTime)
{
TimingDelay = nTime;
while(TimingDelay != 0);
}
/**
* @brief 获取节拍程序
* @param 无
* @retval 无
* @attention 在 SysTick 中断函数 SysTick_Handler()调用
*/
void TimingDelay_Decrement(void)
{
if (TimingDelay != 0x00)
{
TimingDelay--;
}
}
/*********************************************END OF FILE**********************/
#ifndef __SYSTICK_H
#define __SYSTICK_H
#include "stm32f1xx.h"
typedef uint32_t u32;
void SysTick_Init(void);
void Delay_us(__IO u32 nTime);
#define Delay_ms(x) Delay_us(100*x) //单位ms
#endif /* __SYSTICK_H */
可以根据此代码来修改或添加,使用滴答定时器,可以实现更好的移植性。